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ABSTRACT 

The concept of controlling optical laser beams on spacecraft for acquisition, 

tracking and pointing purposes is quickly becoming a reality.  As a result, fine pointing of 

laser beams is turn out to be an increasingly important research topic.  A unique testbed 

was constructed in order to study and develop new methods for laser beam control.  This 

testbed, the Moving Target-Source Test Fixture (MTSTF), hosts a laser source, the 

Extremely Agile Relaying Laser Source (EARLS), which has the capability of 

automatically acquiring and directing a laser beam onto a satellite simulator while in 

motion.  The purpose of this thesis is to make the EARLS platform operational by 

developing a tracking control system.  The ultimate goal is to point the laser beam at the 

satellite simulator’s receiving telescope and maintain the laser within the telescope’s 

limits in the presence of structural disturbance induced by the EARLS motion. 
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I. INTRODUCTION  

A. BACKGROUND 
 

1. Motivation 
The recent advancements in laser technology have made possible the concept of 

using lasers on spacecraft for targeting ground-based objects.  Lasers on spacecraft can be 

used for communications, target acquisition as well as imaging.  While this concept is a 

possibility it does present several challenging engineering problems that must be 

overcome prior to full scale testing.  In particular, the greatest challenge is fine pointing 

of a laser beam in the presence of structural vibrations. 

All spacecraft has machinery that rotates and hence produce vibrations throughout 

the structure.  While this vibration may be small it has an exaggerated effect on laser 

beam pointing.  The undesired movement in the laser beam is termed “jitter.”  As 

Watkins states in his PhD dissertation[Watkins, 2004], “A 100mm diameter laser beam 

with 10 µrad of jitter will result in roughly a 400 fold decrease in the intensity of the 

beam at 100 km, due to jitter alone.”  Jitter can also be induced by maneuvering the 

spacecraft with thrusters and exciting natural frequencies.  This is particularly 

problematic since a typical spacecraft has very little structural damping so vibrations can 

take several minutes to diminish. 

In order to study these problems and produce solutions the Naval Postgraduate 

School created the Bifocal Relay Mirror Laboratory (BFRM).  This laboratory has 

testbeds that simulate the spacecraft and laser system in space like conditions.  This thesis 

focuses on the development of a tracking control system for a laser source system in the 

BFRM Laboratory while reducing being subject to structural disturbances. 

 

2. Historical Context 
The BFRM Spacecraft Project has its roots in Strategic Defense Initiative (SDI) 

experiments during the late 1980’s and early 1990’s.  Specifically, the Relay Mirror 
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Experiment (RME) which successfully targeted a ground based laser on an orbiting 

satellite then reflected the laser radiation to another ground facility. 

 

 
Figure 1.   Relay Mirror Experiment [From Chernesky, 2001] 

 

The motivation behind this experiment was its potential application to ballistic 

missile defense.  Shortly afterwards public policy changed and the motivation to continue 

with the experiment was lost.  However, the United States Air Force continued working 

on some of the technical challenges posed by the Relay Mirror Experiment for its 

airborne laser system such as laser beam forming, beam tracking and pointing and jitter 

control.  In the late 1990’s a study performed by the Air Force Research Laboratory 

recognized potential missions for a space based optical relay mirror.  Among these 

missions are camouflage detection and penetration, chemical warfare agent detection and 

identification, illumination for nighttime operation and active imaging, and a laser fence 

for aircraft detection and underground structure detection. 
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3. Bifocal Relay Mirror Laboratory 
In 2000, a preliminary satellite design was completed by a team of Naval 

Postgraduate School masters students resulting in a scissor-like Bifocal Relay Mirror 

spacecraft.  The spacecraft consists of two optically coupled telescopes including 

adaptive optics used to redirect the light from a ground based laser to a distant target as 

seen in Figure 2. 

 

 
Figure 2.   Bifocal Relay Mirror Spacecraft 

 

  A receiver telescope collects the incoming laser energy and channels it through 

internal relay optics to a transmitter telescope.  The transmitter telescope directs the 

energy against the desired target as seen in Figure 3. 
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Figure 3.   Bifocal Relay Mirror Operational Concept 

 

The design specified a target acquisition and tracking systems for each telescope with the 

transmitter side requiring the added capability of tracking uncooperative terrestrial based 

targets.  The former masters students identified several unique technologies on 

acquisition, tracking and pointing of laser beam optics that need to be developed prior to 

operation of this spacecraft. 

In December 2000, the NPS Spacecraft Research and Design Center (SRDC) and 

AFRL submitted a proposal to National Reconnaissance Office for funding to develop 

these unique technologies for spacecraft purposes.  The proposal was awarded in January 

2001 and the Bifocal Relay Mirror Laboratory was created at the Naval Postgraduate 

School.  The ultimate goal of the Bifocal Relay Mirror Laboratory is to develop 

acquisition tracking and pointing of the Bifocal Relay Mirror Spacecraft. 
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B. Thesis Overview 
Chapter II introduces the equipment used for experimental purposes to include the 

Three Axis Satellite Simulator testbed, Moving Target Source Test Fixture and 

Extremely Agile Relaying Source Laser.  The sensors and actuators, as well as the 

computer control system will be explained in detail. 

Chapter III details the system identification process of the Extremely Agile 

Relaying Source Laser components.  Experimental data will be compiled and 

mathematically manipulated to form transfer functions for the system components.  The 

mathematical models will be verified by comparing the model to the experimental test 

results. 

Chapter IV explains the control methods used to make various Extremely Agile 

Relaying Source Laser testbed components operational.  A review of the associated 

control theory will be presented as well as a detail explanation of implementation.   

The experimental results and analysis will be presented in Chapter V and the 

conclusions and recommendations will discussed in Chapter VI. 
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II. EXPERIMENTAL SETUP 

A. THREE AXIS SATELLITE SIMULATOR TESTBED (TASS) 
The Bifocal Relay Mirror Laboratory hosts the second generation satellite 

simulator (TASS2).  TASS2 is a test platform used to simulate the Bifocal Relay Mirror 

Spacecraft.  TASS2 consists of a satellite bus and optical payload as seen in Figure 4. 

 

 
Figure 4.   Three Axis Satellite Simulator #2 (TASS2) 

 

TASS2 rests on a spherical air bearing which when pressurized, allows the testbed 

to float in a near frictionless environment simulating extraterrestrial conditions.  The 

satellite bus attitude control is maintained by four single gimbal Control Moment 

Gyroscopes (CMGs).  The CMGs are attached to a hinged frame which allows them to be 

reconfigured to different skew angles.  The satellite bus is balanced by an automatic mass 

balancing system.  Several proof masses are placed around the bus on linear drives 

allowing both horizontal and vertical motion of control TASS2’s center of gravity. 
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TASS2’s optical payload is positioned on a separate deck on top of the satellite 

bus. The optical payload, as seen in the Figure 5, consists of receiving and transmitting 

telescopes, two Baker Adaptive Optics fast steering mirrors for jitter control and fine 

laser steering, a Position Sensing Detector (PSD) that obtains the reference signal, 

cameras for acquiring the source platform and a Newport optical train components for 

laser beam routing and alignment. 

 

 
Figure 5.   TASS2 Optical Payload 

 

The purpose of the optical payload is to receive incoming laser energy from the 

laser source then redirect the laser energy to a target.  The optical payload is also capable 

of steering the laser source on a moving target as well as negates the effect of jitter using 

a fast steering mirror (FSM).  The payload deck is motorized and can be rotated about the 

satellite’s Y body axis or axis that runs thru the center of rotation to the air bearing.  A 

more thorough explanation of TASS2’s hardware can be found in [Kulick, 2004].  
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B. MOVING TARGET-SOURCE TEST FIXTURE (MTSTF). 
The laboratory also hosts a testbed that simulates the laser source and target. This 

testbed is known as the Moving Target-Source Test Fixture (MTSTF) and can be seen in 

Figure 6. 

 

 
Figure 6.   Moving Target-Source Test Fixture (MTSTF) 

 

It was designed and built by Guidance Dynamics Corporation and delivered to the BFRM 

laboratory in June 2005.  The MTSTF testbed independently operates the source and 

target platforms on linear stages or tracks.  The source platform was given the name 

Extremely Agile Relaying Laser Source (EARLS) and the target is called Diagnostic 

Target (DT).   

The idea of MTSTF is to provide a laser source (EARLS) to aim at the satellite 

(TASS2) while also providing a target (DT) for the satellite to acquire and track as seen 

in Figure 7.   
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Figure 7.   Experimental Layout 

 

Since it would be exceptionally difficult to simulate orbiting motion in the 

laboratory by rotating TASS2 around a laser source, the decision was made to move the 

laser source with respect to TASS2.  So the laser source assembly was placed on a linear 

motion track permitting it to be moved at a velocity comparable with an orbital rate.  The 

target was also placed on a separate linear track so it may behave in an uncooperative 

manner.  The MTSTF drive components, source components and target components will 

be explained in more detail below 

 
1. Moving Target-Source Test Fixture Drive Components 

a. Linear Track 
The track consists of two independently operated linear tracks as seen in 

Figure 8. 
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Figure 8.   MTSF Highlighting Independently Operated Linear 

Actuators 
 

Both linear tracks are belt driven and manufactured by Parker Hannifin, Model HPLA 

120/406XR, Model# 802-7633D.  The track has limit switches at each end that results in 

a software shutdown when tripped.  Technical specifications are provided in Appendix A 

and can be found at:  

http://www.parkermotion.com/products/Belt_Driven_Linear_Actuators__5485__30_32_80_567_
29.html 
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b. Prime Movers 
The prime mover for each linear actuator is a Parker Hannifin J series 

brushless servo motor, Model# J0922JE-KPSN.  The motors are driven by a Gemini GV 

Series digital servo drive, Model# RS-232/485.  Technical Details for the motors are 

provided in Appendix B and can be found at: 

http://www.parkermotion.com/products/Rotary_Servo_Motors__5208__30_32_80_567_29.html 

 

c. Controller 
The motion for the linear actuator is controlled by a Parker 6K series six 

axis controller.  The controller can be programmed via an attached personal computer 

which has the Parker Motion Planner software.  Technical specifications for the 6K 

controller are provided in Appendix C and can be found at: 

http://www.parkermotion.com/products/Controllers__1745__30_32_80_567_29.html 

 

2. Extremely Agile Relaying Laser Source (EARLS) 
The principal components of the EARLS assembly are the two motors and optical 

board for the laser assembly.  One motor is for azimuth rotation and the other is for 

elevation rotation.  The laser assembly is mounted on a vertical breadboard which is 

attached to the elevation motor.  The laser assembly is composed of the following major 

components which can be seen in Figure 9: 

1.  A New Focus model #9935 optical laser source 

2.  A Baker Adaptive Optics FSM for jitter control 

3.  An Orion 102mm optical telescope 

4.  A Watec video camera for acquiring TASS2 

5.  And a Newport optical train for laser beam routing and alignment..  
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Figure 9.   Extremely Agile Relaying Laser Source (EARLS) 

 

The laser beam originates at the source and passes through an optical train to the 

FSM.  The laser beam then reflects off the FSM and passes through a beam expanding 

telescope which forms the beam into a 102mm diameter doughnut shape.  Upon departure 

from the telescope, the laser beam travels to the optical payload on TASS2. 
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a. Fast Steering Mirror (FSM) 
The FSM was designed and built by Baker Adaptive Optics as can be seen 

in Figure 10. 

 

 
 

Figure 10.   Fast Steering Mirror (FSM) 
 

The intent of the source FSM is to eliminate disturbances and vibrations induced by the 

sources motion along the linear track as well as fine steering of the laser beam.  The FSM 

has a one inch diameter mirror and uses voice coils to position the mirror in response to 

input commands.  The voice coils are placed orthogonally to drive the mirror in the X & 

Y “tip-tilt” directions.  The FSM is driven and controlled by an embedded MATLAB 

software program.  The control bandwidth for the FSM is less than 350 Hz, depending on 

the direction of motion, and the maximum applied voltage in either direction is 5 volts.  

Additionally, the natural frequency is approximately 230 Hz depending on the direction 

of motion. 
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b. Video Camera 
The video camera is a Watec Model WAT-902.  The camera has a pixel 

field of view of 811(H) x 508(V) however a field of view of 640(H) x 480(V) is utilized 

in the experiments.  The complete camera specifications can be seen in Appendix D.  

Mounted on the camera is a Nikon AF Nikkor 50mm 1:1.8 zoom lens to obtain a desired 

field of view. 

The camera is captures a black and white image with a MATLAB embedded 

function.  It operates at an update rate of approximately 30 Hz which incidentally makes 

this device the limiting hardware in the control loop. The camera captures images of a 

three point LED assembly located on TASS2 for position feedback as seen in  

Figure 11. 
 

 
Figure 11.   Location of LED Beacons on TASS2 
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c. Laser Assembly Platform 
The laser source assembly is mounted on a two degree of freedom 

motorized platform allowing the laser to rotate in both the azimuth and elevation 

directions.  The motors are Newport RV120-MVTP high performance precision rotation 

stages.  Theses 120mm diameter motors have the capability to travel 360° continuous, 

however, hardware limit switches are installed on the platform to prevent excess rotation.  

The motors have an encoder feedback resolution of 0.001°.  A CyberResearch mini-PC is 

mounted on the back of the platform for processing and motor/FSM control. 
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III. SYSTEM IDENTIFICATION 

A. OVERVIEW 
Analytically deriving a mathematical model of the laser source and track would 

have been unreasonably difficult undertaking due to the complexity of the system.  Many 

of the physical characteristics of the system are unknown such as mass, moment of 

inertia, coulomb and viscous friction and center of mass.  Therefore, in this report a 

simple linear system is considered sufficient in determining the transfer functions of the 

motors and FSM.  Each of these transfer functions was determined through experimental 

analysis. 

 

B. TRANSFER FUNCTION OF AZIMUTH AND ELEVATION MOTORS 

1. Mathematical Approach to Determining the Transfer Function 
[Chen, 1993] was used as a guide in the following derivation of equations.  The 

DC electric motors were modeled as seen in the Figure 12. 

 

 
Figure 12.   Electrical Schematic of a DC Motor 

 

The torque generated by the motor is given by  

 

( ) ( )tT t k i t=    Equation (2.1) 
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where kt is a torque constant. Due to the external load an electromotive force (back emf) 

will develop in the circuit to resist the applied voltage (Vin).  The back emf voltage, Vb, 

is linearly proportional to the angular velocity of the motor shaft and can be represented 

as 

 

( )( )b b
d tV t k

dt
θ

=  Equation (2.2) 

 

Where kb is a constant.  The motor circuit can be represented by the following 

equation of motion. 

 

( )( ) ( ) ( )b in
di tRi t L V t V t
dt

+ + =   Equation (2.3) 

 

Substituting Equation (2.2) into Equation (2.3) yields 

 

( ) ( )( ) ( )b in
di t d tRi t L k V t
dt dt

θ
+ + =   Equation (2.4) 

 

Now consider the external load which rotates about the motor shaft.  The 

dynamics can be represented as  

 

2

m
d dJ f T
dt dt
θ θ
+ =    Equation (2.5) 
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Where J is the total moment of inertia of the shaft; θ, the angular displacement; 

and f is the viscous friction coefficient of the bearing.  Substituting Equation (2.1) into 

(2.5) and taking the Laplace Transform yields 

 

2 ( ) ( ) ( )tJs s f s k i sθ θ+ =    Equation (2.6) 

 

Taking the Laplace Transform of equation (2.4) and solving for i(s) yields 

 

( )( ) in bV k s si s
Ls R

θ−
=

+
   Equation (2.7) 

 

Substituting Equation (2.7) into Equation (2.6) yields the transfer function 

 

( )( )
[( )( ) ]

t

in t b

ksG s
V s Js f R Ls k k
θ

= =
+ + +

 Equation (2.8) 

 

Since the electrical time constant, e
L
R

τ = , is much smaller than the mechanical 

time constant its effect can be neglected.  Therefore, L=0 and Equation (2.8) will become 

 

( )( )
( )

t

in t b

ksG s
V s JRs k k fR
θ

= =
+ +

  Equation (2.9) 

  

Combining terms and converting to bode form produces the first order system 
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( )
( 1)( 1)

t

t b

m

t b

k
k k fR kG s JR s ss s

k k fR
τ

+
= =

++
+

   Equation (2.10) 

 

Where t

t b

kk
k k fR

=
+

 is the motor gain and m
t b

JR
k k fR

τ =
+

is the motor time 

constant. 

The block diagram of the motors can be represented by the following first order 

model. 

 

 
Figure 13.   General Motor Model 

 

The transfer function from input voltage to output angular velocity is 

 

( )
( 1) in

m

ks V
s

ω
τ

=
+

  Equation (2.11) 

 

Taking the inverse Laplace transform yields 

( ) m

t

in int kV kV eτω
−

= −   Equation (2.12) 

As t approaches infinity Equation (2.12) becomes 

 

( ) inkVω ∞ =     Equation (2.13) 
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The motor gain constant can be determined by applying a voltage (Vin) to the 

motor, measuring ω(∞)  and using Equation (2.13) in the form 
( )

inVk
ω

=
∞

.  Solving for 

the motor time constant, τm, in Equation (2.12) produces 

 

0

0( )ln(1 )
( )

m
t

tτ ω
ω

−
=

−
∞

  Equation (2.14) 

 

This allows the motor time constant to be calculated by measuring the angular velocity at 

any transient time, t0, and steady state angular velocity ω(∞). 

 

2. Determination of Motor Transfer Functions 

In order to establish the motor transfer functions a MATLAB program was 

written to provide a step input to the motors and read the encoder values.  The encoder 

readings were numerically differentiated to obtain the motor velocity, ω, in rads/sec.  The 

motor velocities were plotted as a function of time and ω(t0) and ω(∞) were visually 

extracted. Using ω(t0) and ω(∞) and the input voltage (Vin) in the above equations , the 

transfer functions were computed.  The computed transfer functions are presented in 

Table 1.  Computational values used in the calculations can be found in Appendix E.   

 

Elevation 
Up 

Elevation 
Down 

Azimuth 
Back 

Azimuth 
Forward 

0.0132
0.03 1s +

 0.014
0.03 1s +

 0.0158
0.03 1s +

 0.0152
0.03 1s +

 

Table 1.   Motor Transfer Functions 
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Figures 14-17 show the actual system response and transfer function response to a 

step voltage command.  The “noise” present in the measured data can be attributed to 

effects of numerical integration.  From these plots the conclusion can be drawn that the 

calculated transfer functions accurately represent the motors for modeling purposes.  The 

MATLAB Program used for determining the transfer function can be seen in Appendix F. 

 

 
 

Figure 14.   Elevation Motor Velocity Measurements - Up 
Direction 
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Figure 15.   Elevation Motor Velocity Measurements - Down 

Direction 

 
Figure 16.   Azimuth Motor Velocity Measurements - Back 

Direction 
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Figure 17.   Azimuth Motor Velocity Measurements - Forward 

Direction 
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C. TRANSFER FUNCTION OF FAST STEERING MIRROR 

In order to determine the transfer function of the FSM, it had to be physically 

removed from the laser source and placed on the Laser Jitter Control Testbed (LJC) for 

experimental testing.  A Position Sensing Detector (PSD) and laser source were also 

needed for this experiment.  The components were placed in the configuration seen in 

Figure 8. 

 

 
 

Figure 18.   Fast Steering Mirror Experimental Testing Set Up 
 

While on the LJC, the FSM was driven by the EARLS computer via a ribbon 

cable extension.  A MATLAB program was written to command the FSM with a chirp 

signal frequency sweep from 0-800 Hz (see code in Appendix G).  The PSD was used to 

capture the laser’s position in millimeters at a sampling time of 0.0005 seconds.  So the 

FSM voltage is the input and the PSD data in millimeters is the output.  dSPACE 

software was used to record and view the raw data from the PSD.  The data was then 

converted to a MATLAB compatible file and the Bode plot was created.  Using the 

methods outlined in [Ogata, 2002, Chapter 8] the transfer function was extracted from the 

Bode plot. 
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1. Transfer Function for X Tip-Tilt Direction  
Using the experimental data the frequency response of the FSM for the X-

direction was produced and can be seen in Figure 19. 
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Figure 19.   Frequency Response of Fast Steering Mirror in X-
Direction 

 

The FSM has a natural frequency at 212 Hz.  From this data the open loop 

transfer function was determined to be: 

7 2 5

( ) 0.63( )
( ) 5.636 16.52 1x dir

Output mmG s
Input volts e s e s− − −= =

+ +
 

The damping was found to be 0.11. 
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The Bode plot in Figure 20 compares the actual FSM response to the transfer 

function confirm that the transfer function closely represents the mirror behavior in the 

X-direction. 
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Figure 20.   Bode Plot of Experimental Data for X Direction 
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The Bode plot of the transfer function as seen in Figure 21 shows a bandwidth of less 

than 326 Hz and a phase margin of 26°. 

Bode Diagram
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Figure 21.   Bode Plot of Transfer Function for X direction. 
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2. Transfer Function for Y Tip-Tilt Direction  

Using the experimental data the frequency response of the FSM for the Y-

direction was produced as seen in Figure 22. 
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Figure 22.   Frequency Response of Fast Steering Mirror in Y-
Direction 

 

The FSM has a natural frequency at 253 Hz.  From this data the open loop 

transfer function was determined to be: 

7 2 5

( ) 0.68( )
( ) 3.895 13.73 1y dir

Output mmG s
Input volts e s e s− − −= =

+ +
 

The damping was found to be 0.11. 

The Bode plot in Figure 23 compares the FSM response to the transfer function 

confirming that the transfer function closely represents the mirror behavior in the Y-

direction. 
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Figure 23.   Bode Plot of Experimental Data for Y Direction 
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The bandwidth is less than 393 Hz and a phase margin of 24° as seen in the Bode plot of 

Figure 24. 

Bode Diagram
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Figure 24.   Bode Plot of Transfer Function for Y direction. 
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IV. CONTROL METHODS 

A. OVERVIEW 
In order to track TASS2 with the EARLS two separate control laws had to be 

utilized: one for the FSM and one for the motors.  Both the motors and FSM are 

independently operated and therefore separately driven.  The elevation and azimuth 

motors are used to keep the laser source near the receiving telescope on TASS2 but 

maybe not exactly on target.  The FSM is used for disturbance rejection and fine steering 

the laser beam into the receiving telescope with little or no error.  Classical control 

methods were used for the motor operation while input shaping control was used for the 

FSM.  An explanation of both these methods will follow below.  

 

B. FAST STEERING MIRROR CONTROL 

1. Input Shaping Theory 

Since the FSM is solely used for fine pointing of the laser beam there is an 

implied expectation that mirror has no residual vibrations after a movement.  To ensure 

this requirement is met the “input shaping” control technique was chosen for this system.  

A description of this technique will be detailed below using the [Singh, Singhouse] input 

shaping tutorial as a guide. 

G.H. Smith first proposed the input shaping technique in which a lightly-damped 

system, subject to a step input, could generate a non-oscillatory response [Smith, 1956].  

This is achieved by exciting two transient oscillations so as to result in beneficial 

cancellation of the oscillations.   For example, if we give a second order system such as 

the FSM an impulse input, vibrations will ensue.  Now if we give the system a second 

impulse at a specified time later, ∆t, the vibration induced by the first impulse can be 

cancelled.  This is illustrated in Figure 25. 
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Figure 25.   Two Impulse Response [From Sing, Singhouse] 

 

In order for this technique to work effectively the amplitudes of the 

impulses and time locations must be calculated.  Assuming that we have an 

accurate estimate of the FSM’s natural frequency in rads/sec, ω, and damping 

ratio, ζ, then the vibration that occurs from the impulses can be described by: 

2 2( , ) ( , ) ( , )ntV e C Sζωω ζ ω ζ ω ζ−= +  Equation (4.1) 

where, 

1

1

( , ) cos( )

( , ) sin( )

i

i

n
t

i d i
i

n
t

i d i
i

C Ae t

S Ae t

ζω

ζω

ω ζ ω

ω ζ ω

−

=

−

=

=

=

∑

∑
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Ai and ti are the amplitudes and time locations of the impulses, n is the number of 

impulses and 21dω ω ζ= − .  Equation 4.1 physically represents the amount of vibration 

that will result from a unity-magnitude impulse.  So by setting this equation to zero the 

proper amplitudes and time location can be solved for.   However, to avoid the trivial 

solution of all zeroed valued impulses and to obtain the normalized result, we require the 

impulses to sum to one: 

1iA =∑  Equation (4.2) 

We also want to require the amplitudes to by positive so: 

0,Ai >   1, 2,...i n=  Equation (4.3) 

For a two pulse sequence, the problem has four unknowns – the two amplitudes 

(A1, A2) and the two impulse time locations (t1, t2).  By setting the first impulse time (t1) 

to zero, the problem reduces to three unknowns.  In order for V(ω,ζ) to equal zero, C(ω,ζ) 

and V(ω,ζ) must equal zero because they are squared in and V(ω,ζ).  Therefore, the 

impulses must satisfy: 

2
1 2 20 cos( )t

dA A e tζω ω−= +   Equation (4.4) 

2
2 20 sin( )t

dA e tζω ω−=      Equation (4.5) 

Equation 4.5 can be satisfied in a non-trivial manner when the sine term equals 

zero.  This occurs when 

2 2 ; 1, 2...
2

d
d

d

nTnt n t nπω π
ω

= ⇒ = = =   Equation (4.6) 

where Td is the damped period of vibration.  To cancel the vibration in the 

shortest amount of time, choose n=1 so: 

2 2
dTt =   Equation (4.7) 
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For this case A1+A2=1 therefore: 

21
1 10 (1 )A A e

ζπ

ζ

⎛ ⎞−⎜ ⎟
⎜ ⎟−⎝ ⎠= − −   Equation (4.8) 

Rearranging and solving for A1 gives: 

2

2

1

1

11

eA

e

ζπ

ζ

ζπ

ζ

⎛ ⎞−⎜ ⎟
⎜ ⎟−⎝ ⎠

⎛ ⎞−⎜ ⎟
⎜ ⎟−⎝ ⎠

=

+

  Equation (4.9) 

Defining
21K e

ζπ

ζ

⎛ ⎞−⎜ ⎟
⎜ ⎟−⎝ ⎠= , the sequence of two pulses can be summarized as: 

1
1 1

0 0.5

i

i
d

KA
K K

t T

⎡ ⎤⎡ ⎤ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  Equation (4.10) 

Since it would be impractical to drive a system with only impulses, a more usable 

form of this technique would be to combine the impulse input with a desired input such 

as a step command.  This can be achieved through convolution of the form: 

0

* ( ) ( )
t

f g f t g t dτ τ= −∫   Equation (4.11) 
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The input sequence is convolved with the desired input and the convolution 

product is now the new input that will cause no vibration.  This process is demonstrated 

in the Figure 26 for a desired command that is a pulse and a two sequence impulse. 

 

 
Figure 26.   Continuous Shaped Input [Sing, Singhouse] 

 

The FSM natural frequencies, damping ratios and damped period of vibrations 

were ascertained from the system identification process.  These values were used in the 

above equations to calculate the amplitudes and corresponding times for the input.  The 

calculated values can be seen in the Table 2. 
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 X-Direction Y-Direction 
Natural Frequency, ω 1332 rads/sec 1590 rads/sec 
Damping Ratio, ζ 0.11 0.11 
Damped Period of 
Vibration, Td 

0.0048 sec 0.0039 sec 

Amplitude #1, A1 0.5276 0.5276 
Amplitude #2, A2 0.4724 0.4724 
Time delay, t2 0.0024 sec 0.0019 sec 

Table 2.   Input Shaping Values for Fast Steering Mirror 

 

To test the effectiveness of input shaping on the FSM performance a SIMULINK 

model was created for each tip-tilt direction (see model in Appendix H).  The model was 

run with a 0.6 volt step input as well as a 0.6 volts shaped input for each direction.  The 

shaped inputs and FSM response can be seen in Figures 27-30.   
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Figure 27.   Shaped Input for X-direction 
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Figure 28.   Fast Steering Mirror Response For X-Direction 

  



40 

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.1

0.2

0.3

0.4

0.5

0.6

Time (sec)

In
pu

t A
m

pl
itu

de
 (V

ol
ts

)

 
Figure 29.   Shaped Input for Y-direction 
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Figure 30.   Fast Steering Mirror Response For Y-Direction 

 

There is a significant improvement in both directions with the shaped input; however 

some slight oscillations still exist.   This is likely due to slight inaccuracies in the model.  

For instance, the damped periods of vibration, Td, was taken manually from a plot of the 

FSM’s response to a step input.  Also the damping ratio and natural frequencies may not 

be precise.  The disadvantage with the two impulse shaped input is its lack of robustness; 

it is highly dependant on an accurate model.  Nonetheless, the performance is much 

improved and acceptable for this application. 
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C. MOTOR CONTROL 

Control of the azimuth and elevation motors was complicated by a combination of 

motor stiction and uneven loads.  The azimuth motor has a stiction breakout voltage of 

approximately 2.7 volts while the elevation motor has a breakout voltage of 

approximately 3.6 volts.  The values can change slightly depending on the temperature of 

the motors.  Additionally, the EARLS platform has an uneven distribution of mass with 

respect to the rotation axis of the motors.  So the platform was susceptible to rocking 

motion when the motors go through any change in direction motion.  The elevation motor 

is especially susceptible to rocking motion even with start-stop motion.    

To maintain a stable platform and keep the laser on target it was decided that the 

elevation motor should be used minimally.  In fact this was easily done since the EARLS 

platform moves only along the x-direction on the linear track.  Proportional plus Integral 

(PI) control action was used to control the azimuth motor.   To keep the motors from 

overshooting and having to change direction a deadzone was created to turn off the 

motors before it overshot. The ideal magnitude of the deadzone was computed each time 

the system was run so it varied depending on the current configuration.  However, the 

deadzone was usually around ±7.6 pixels (4.3 mm).  In another words, when the laser 

was off target by 7.6 pixel the motors were set to turn off to prevent overshoot.  As will 

be explained in detail later, when the motors turn off, the FSM is still capable of keeping 

the laser on target.  Preventing overshoot was particularly important because the motors 

never had to change direction and induce vibrations.   

Integral control was implemented by summing the pixel error followed by scaling 

the sum with a gain.  To prevent and integral “wind up” while the motors were shut off, 

the pixel error sum was reset to zero during any operation within the deadzone. 
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V. CONTROL ALGORITHM PROGRESSION 

A. OVERVIEW 
A MATLAB program was created to control and move both the motors and FSM.  

The code can be seen in Appendix I.  The control program has essentially three parts: a 

calibration sequence, a beacon locating sequence and a control sequence.  These parts 

will be explained in detail below 

 

B. CALIBRATION SEQUENCE 
As mention previously the camera takes images of the beacons on TASS2 for 

feedback purposes. The beacons located on TASS2 can be seen in Figure 11 on page 15.  

When the MATLAB control program is invoked, the motors first move the EARLS 

assembly to roughly point at TASS2 so that the beacons are within the camera’s view.  

The camera takes an image (640x480 pixels) of the beacons, locates the exact position of 

each beacon (the beacon location method will be explained later) then labels each beacon 

either A,B or C based on the distance between the beacons.  The camera has a filter 

placed in the lens that allows it to only capture blue light, therefore only the three blue 

LED beacons are visible in the image.  The beacons appear as white bright spots in the 

image.  Once taken the image would look similar to Figure 31 below.  From the known 

distances between beacons the program computes the number of pixels per millimeter in 

both the x and y directions on the testbed.  This ratio will be used in the control sequence 

to relate an error in pixels to a physical movement in millimeters.  For accurate results, 

TASS2 should be level during the calibration process.  Also the code has a place for the 

user to define the x and y offset from beacon A to the receiving telescope.  The offset is 

determined by physically measuring the x and y distance (in millimeters) from the beacon 

to the center of the telescope.  These values shouldn’t be changed unless the beacon 

assembly or telescope position has changed.  These millimeter offsets are converted to 

pixel offsets via the aforementioned ratios and used to compute the position of the 

telescope as illustrated in Figure 32. 
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Figure 31.   Cartoon of Camera Image of LEDs 
 

 

 

Figure 32.   Cartoon of Camera Image of LEDs with Telescope 
Location 

 



45 

Once the receiving telescope position is established the code is capable of 

accounting for TASS2 rotations in the X-Y plane simply by computing the angle of 

rotation, β, then measuring the offsets from the A beacon as seen below.  The code also 

has a place to input the laser offset from the make the laser point at the receiving 

telescope with zero error.  This laser offset accounts for the lasers position on the EARLS 

platform relative to the camera.   

 

 

 

Figure 33.   Cartoon of Rotated Camera Image of LEDs with 
Telescope Location 
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C. BEACON LOCATING SEQUENCE 

The beacon locating sequence begins by taking an image of the three beacons.  

The brightest spot within the image is identified then a virtual box (30x30 pixels) is 

placed around the spot.  Each of the 900 pixels within the box is analyzed and only the 

brightest ones are retained.  The program then takes this cluster of “brightest pixels” and 

computes the centroid much like computing the center of mass of an object.  The 

resultant centroid is a single point on an image and the x and y position within the image 

is recorded.  Note that the top left corner of the image is the origin of the coordinate 

frame.  Once a LED centroid is marked, all pixels within the virtual box are “blackened 

out” to prevent it from being used again.  This process, referred to as “centroiding,” is 

repeated until all three beacons are found.  Once found the beacons are labeled (A, B or 

C) by computing the distance between the beacons and comparing to the known pre-

measured distances.   

 

D. CONTROL SEQUENCE 
After the beacons are marked the program uses the beacons to determine the 

orientation of TASS2 (i.e. the rotation) and hence the location of receiving telescope.  

The program then compares the location of the receiving telescope to the laser position 

and computes the x and y errors.  The errors in pixels are used as feedback in the control 

algorithms so they are converted to voltages via the control methods (PI and Input 

Shaping).  The voltage commands are sent to the motors and FSM to induce movement of 

the laser.  This process repeats at approximately 30 Hz.  The Watec camera is the control 

loop rate constraining hardware since its maximum sample rate is 30 Hz. 

Software limiters on the command voltages were placed in the control program to 

ensure safe and accurate operation.  Both motors have a limit of ±10 volt references due 

to the limits of the analog output card.  The FSM has a limit of ±0.60 volts (15 mm) to 

keep the laser within the optics range.  Test have shown that FSM voltages greater than 

0.6 volts induces a movement that drives the laser beam out the transmitting telescope’s 

optical range resulting in a partially transmitted or “clipped” beam. 
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VI. RESULTS AND ANALYSIS 

A. OVERALL RESULTS 
As stated above, the EARLS platform must be calibrated to determine the offsets 

to make the laser source point at the receiving telescope.  The calibration is done when 

the FSM is at the default or uncommanded position and the offsets are used to determine 

the error between the laser source and telescope positions through each control cycle.  

This error will be termed the “sensor error” since the camera is used to produce 

determine this error.  The sensor error is a best estimate from known locations of the laser 

source point at the receiving telescope since the EARLS assembly doesn’t have the 

capability to sense the laser beam’s location.  This is important because when the FSM is 

commanded to steer the laser beam, it moves away from the default (uncommanded) 

position leading to an inaccurate error because the offsets are no longer valid.  In short, 

there is no direct feedback on the laser beam location.  To get around this problem an 

“actual” error was created which takes into account the mirror movement when 

calculating the error.  So the revised object of this project is to keep the laser on target 

while keeping the actual error to zero.  The actual error is computed by converting the 

FSM voltages to laser distance traveled in pixels then subtracting this movement from the 

error. The control program computes both the x and y actual error. 
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Operational testing was conducted by initiating the EARLS control program and 

allowing it to acquire TASS2.  Once this was done the EARLS platform was moved 

down the linear track to simulate the satellite moving at a constant speed.  The x-direction 

actual errors from an operational test are presented in Figure 34. 
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Figure 34.   X-Direction Actual Error 

 

The error “spikes” are reflective of the laser moving off the target.  The greatest error is 

approximately -0.5 pixels which converts to 0.30 millimeters.  This is an acceptable error 

since the laser beam remain within the receiving telescopes optics. 
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Figure 35 shows the actual errors in the y direction. 
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Figure 35.   Y-Direction Actual Error 

 

Except for the transient segment between zero and approximately one second, which is 

when the laser is initially moving on target, the y error remains at zero.   

 

B. SYSTEM PERFORMANCE IN THE X-DIRECTION 

The control sequences for the FSM and motors are tuned to compliment each 

other.  They are adjusted such that when the error is small enough to be within range for 

the FSM to correct, the motors turn off.  The FSM can generally correct an error less than 

7.6 pixels (0.6 volts) in either direction before the laser beam starts to “clip.”  Once the 

error approaches 7.6 pixels the motor turns on and the mirror able to unload.   
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The x-direction results from an operational test are presented in Figure 36.  The 

figure highlights how the FSM and azimuth motor work together to minimize the actual 

error. 
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Figure 36.   Azimuth Motor and Fast Steering Mirror Voltages 
for the X-direction 

 

This complimentary control has the added benefit of never allowing the laser 

beam to be clipped (i.e. voltages greater than 0.6 volts) while never allowing the motors 

to overshoot the target.  Additionally, with this type of control sequence, the motors are 

pulsed in the most ideal manner, slightly above stiction voltage, which doesn’t induce 

excessive vibration. 

If the system was performing ideally the FSM correction in pixels should 

precisely follow the sensor error.  Otherwise any deviation between the FSM correction 

and the sensor error would signal that the FSM wasn’t able to account for the error.  

Figure 37 shows the both the sensor error and mirror movement in the x-direction. 
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Figure 37.   Comparison Between Error and Mirror Movement 

in the X-direction 
 

The FSM correction does follow the sensor error except when the red lines are seen.  

Consequently, it would be expected that at the point of time when the red lines are visible 

the actual error would be greater than zero, which is confirmed by viewing Figure 34 in 

the Overall Results section.  

 

C. SYSTEM PERFORMANCE IN THE Y-DIRECTION 
Since the EARLS is moving down a level linear track without changing altitude, 

the elevation motor is rarely used during operation.  As a matter of fact it is desired not to 

use the elevation motor because it tends to induce excessive rocking of the EARLS.  

However, the system will have some slight rocking when moving down the linear track 

so the intent is to correct the y-direction errors induced by this motion with the FSM 

only.  Figure 38 compares the y sensor error to the FSM movement. 
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Figure 38.   Comparison Between Error and Mirror Movement 

in the Y-direction 

 

Except the initial acquisition of TASS2 there is no deviation.  So the FSM is able to 

correct all the y-direction error.  This is also confirmed by Figure 31 in the Overall 

Results section which shows no actual error.  Additionally, the below plot confirms that 

only the FSM corrects the y error since the motor voltage remains at zero. 
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Figure 39.   Elevation Motor and Fast Steering Mirror Voltages 

for the Y-direction 
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VII CONCLUSIONS AND RECOMMENDATIONS  

A. CONCLUSION 
The purpose of this thesis was to make the EARLS platform operational by 

developing a tracking control system.  The goal was to point the laser beam at TASS2’s 

receiving telescope and maintain the laser within the telescope’s limits in the presence of 

structural disturbances.  To accomplish this two control algorithms were developed, one 

for the motors and one for the fast steering mirror.   

The mathematical model for each motor and fast steering mirror were determined 

through experimentation then presented in the form of a transfer function.  Tracking 

control methods were developed for these components and implemented into a MATLAB 

program to form the EARLS control system.  The motors were controlled with a 

proportional-plus-integral control algorithm and the fast steering mirror was controlled 

with an input shaping algorithm.   Operational tests of the EARLS system demonstrated 

that the control system was able to accurately keep laser source on target within the 

receiving telescope’s limits. 

 

B. FUTURE WORK 
Although the tracking system for the EARLS testbed worked exceptionally well, 

it was only one piece of the overall picture.  The EARLS testbed was intended to interact 

with TASS2’s payload which wasn’t operational at the time of this theses research.  Once 

TASS2’s payload is operational the control system can be refined or new control methods 

can even be explored.  This would be a perfect and meaningful opportunity for a future 

graduate thesis. 

Also, is some equipment upgrades were made the control system would work 

much more efficiently.  As noted previously the Watec video used for feedback has a 

cyclic limitation of 30 Hz.  Replacing this camera with a faster version would open the 

door to more control opportunities providing higher control bandwidth.  Active control of 

EARLS structural vibrations is also a possibility with the use of vibration sensors on the 

MTSTF structure.  On another note, if the laser beams position on TASS2’s testbed could 
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somehow be fed back to the EARLS control system the FSM control loop could be 

closed further improving performance.  
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APPENDIX A: LINEAR TRACK DATA 

 



58 
 



59 

APPENDIX B: PRIME MOVER DATA 
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APPENDIX C: CONTROLLER DATA 
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APPENDIX D: VIDEO CAMERA DATA 

 



64 

 



65 

APPENDIX E: MOTOR TRANSFER FUNCTION DATA 

 
Motion 

Direction 
Elevation 

Up 
Elevation 

Down 
Azimuth 

Back 
Azimuth 
Forward 

km 0.0127 0.0136 0.0155 0.0153 
τm 0.0904 0.0710 0.0728 0.0772 
( )

in

s
V
ω  0.0127

0.09 1s +
 0.0136

0.071 1s +
 0.0155

0.0728 1s +
 0.0153

0.0772 1s +
 

( )

in

s
V
θ  0.0127

(0.09 1)s s +
 0.0136

(0.071 1)s s +
 0.0155

(0.0728 1)s s +
 0.0153

(0.0772 1)s s +
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APPENDIX F: MATLAB CODE FOR DETERMINING THE 
MOTOR TRANSFER FUNCTIONS 

%********************************************************************** 
% Motor Measurements.m - Measures & plots motor position and  
%                        angular velocities of each axis.  
% 
% LCDR Scott Johnson, Jan 06 
%********************************************************************** 
  
%% 
%**********************************************************************
**** 
%                           Elevation Up Measurements 
%**********************************************************************
**** 
  
%close all 
%clear all 
clc 
                      
%*** Prep axis for test **** 
  
HomePosition;% Send the Source to the home position.  
pause(1); 
BAO_Motion2(0,5, 0,0);pause(8.0);BAO_Motion2(0,0, 0,0); % bring source 
all the way down  
pause(2) 
  
%*** Initialization ***     
  
% 5V=6.5s 
  
voltage = 10; % motor voltage for test 
t = 3.5; % period of test in seconds 
  
t = t/0.01;  % segment test period time segments to be used in arrays.  
See for loop below 
  
Time = zeros(1,t); % time array 
read = zeros(1,t); % encoder reading array 
  
encoders = BAO_Motion2(0,0, 0,0); %take initial reading 
read(1) = encoders(4);  % read encoder count 
Time(1) = 0; % initial time is zero 
                        
%*** Start Test *** 
  
  
BAO_Motion2(0,-voltage, 0,0); tic  %start motion & time 
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for i=1:t; % carry out readings for t*0.01 seconds; period=pause*i(max) 
    encoders = BAO_Motion2(0,-voltage, 0,0); % read encoders  
    Time(i+1) = toc; % read time 
    read(i+1) = encoders(4); % choose elevation encoder reading 
(counts) 
    pause(0.01) 
end 
  
BAO_Motion2(0,0, 0,0); % Stop motion 
  
  
%**** Calculations ***** 
  
dX=diff(read); 
dT=diff(Time); 
  
vel = dX./dT; % velocity in counts/s 
  
w = vel.*(1/57296); % angular velocity. 1 rad = 57296 counts 
  
%**** Plots ***** 
  
% First need to calc time interval midpoint for each angular vel 
  
for i = 1:t 
    w_time(i) = Time(i+1) - dT(i)/2; 
end 
  
% plot time vs angular vel (rads/sec) 
  
plot(w_time,w) 
xlabel('time (sec)') 
ylabel('Angular Velocity (rads/sec)') 
title(['Elevation Up Instantaneous Angular Velocity (rads/s) for 
Voltage = ',num2str(voltage),' V']) 
grid 
%  
%  
% % plot calculated velocity response curve 
%  
% Km=0.012 
% a=10 
% Tm=0.057 
% Wt=Km*a*(1-exp(-w_time/Tm)) 
% hold 
% plot(w_time,Wt) 
% Wt2=Km*a*(1-exp(-Time/Tm)) 
% plot(Time,Wt2,'c') 
  
  
% plot time vs angular vel (degrees/sec) 
  
% figure 
% plot(w_time,w.*(180/pi)) 
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% xlabel('time (sec)') 
% ylabel('Angular Velocity (degrees/sec)') 
% title(['Elevation Up Instantaneous Angular Velocity (deg/s) for 
Voltage = ',num2str(voltage),' V']) 
% grid 
  
% plot time vs position (rads) 
  
% figure 
% plot(Time,read./57296)  
% xlabel('time (sec)') 
% ylabel('Position (rads)') 
% title(['Elevation Up Position (rads)for Voltage = 
',num2str(voltage),' V']) 
% grid 
  
% Plot calculated position response curve and velocity.  Need to use 
simulink file 
% elevation_up.mdl 
  
hold 
% plot(sim_time,-0.18+Position,'r') 
plot(sim_time,velocity,'r') 
legend('Measured Data','Transfer Function') 
  
% plot time vs position (degrees) 
  
% figure 
% plot(Time,(read./57296)*180/pi)  
% xlabel('time (sec)') 
% ylabel('Position (degrees)') 
% title('Elevation Up Position (degrees)for Voltage = 
',num2str(voltage),' V']) 
% grid 
  
%% 
  
%**********************************************************************
**** 
%%                             Elevation Down Measurements 
%**********************************************************************
**** 
  
  
%clear all 
clc 
  
%*** Prep axis for test **** 
  
HomePosition;% Send the Source to the home position.  
pause(1); 
BAO_Motion2(0,-5, 0,0);pause(4.2);BAO_Motion2(0,0, 0,0); % bring source 
all the way up 
pause(2) 
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%*** Initialization ***     
  
% 5V = 5sec 
  
voltage = 10 % motor voltage for test 
t = 3.0 % period of test in seconds 
  
t = t/0.01  % segment test period time segments to be used in arrays.  
See for loop below 
  
Time = zeros(1,t); % time array 
read = zeros(1,t); % encoder reading array 
  
encoders = BAO_Motion2(0,0, 0,0); %take initial reading 
read(1) = encoders(4);  % read encoder count 
Time(1) = 0; % initial time is zero 
                        
%*** Start Test *** 
  
BAO_Motion2(0,voltage, 0,0); tic  %start motion & time 
  
for i=1:t; % carry out readings for t*0.01 seconds; period=pause*i(max) 
    encoders = BAO_Motion2(0,voltage, 0,0); % read encoders  
    Time(i+1) = toc; % read time 
    read(i+1) = encoders(4); % choose elevation encoder reading 
    pause(0.01) 
end 
  
BAO_Motion2(0,0, 0,0); % Stop motion 
  
  
%**** Calculations ***** 
  
dX = zeros(1,t); % initialization 
dT = zeros(1,t); % initialization 
  
for i=1:t   % calculate dX & dT 
    dX(i) = read(i+1) - read(i); 
    dT(i) = Time(i+1) - Time(i); 
end 
  
vel = dX./dT; % velocity in counts/s 
  
w = vel.*(1/57296); % angular velocity. 1 rad = 57296 counts 
  
%**** Plots ***** 
  
% First need to calc time interval midpoint for each angular vel 
  
for i = 1:t 
    w_time(i) = Time(i+1) - dT(i)/2; 
end 
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% plot time vs angular vel (rads/sec) 
  
figure 
plot(w_time,-w) 
xlabel('time (sec)') 
ylabel('Angular Velocity (rads/sec)') 
title(['Elevation Down Instantaneous Angular Velocity (rads/s) for 
Voltage = ',num2str(voltage),' V']) 
grid 
  
% Plot Transfer function.  Must run Simulink Model elevation_down.mdl 
first to get sim_time & 
% velocity 
hold 
plot(sim_time,velocity,'r') 
legend('Measured Data','Transfer Function') 
  
%  
% % plot calculated response curve 
%  
% Km=0.0093 
% a=10 
% Tm=0.112 
% Wt=Km*a*(1-exp(-w_time/Tm)) 
% hold 
% plot(w_time,Wt,'r') 
  
  
% plot time vs angular vel (degrees/sec) 
  
% figure 
% plot(w_time,w*(180/pi)) 
% xlabel('time (sec)') 
% ylabel('Angular Velocity (degrees/sec)') 
% title(['Elevation Down Instantaneous Angular Velocity (deg/s)for 
Voltage = ',num2str(voltage),' V']) 
% grid 
  
% plot time vs position (rads) 
  
% figure 
% plot(Time,read./57296)  
% xlabel('time (sec)') 
% ylabel('Position (rads)') 
% title(['Elevation Down Position (rads) for Voltage = 
',num2str(voltage),' V']) 
% grid 
  
  
% plot time vs position (degrees) 
  
% figure 
% plot(Time,(read./57296)*180/pi)  
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% xlabel('time (sec)') 
% ylabel('Position (degrees)') 
% title(['Elevation Down Position (degrees) for Voltage = 
',num2str(voltage),' V']) 
% grid 
%% 
  
%**********************************************************************
**** 
%%                            Azimuth Back Measurements 
%**********************************************************************
**** 
  
%clear all 
clc 
  
%*** Prep axis for test **** 
  
HomePosition;% Send the Source to the home position.  
pause(1); 
BAO_Motion2(-5,0, 0,0);pause(5.0);BAO_Motion2(0,0, 0,0); % bring source 
all the way fwd 
pause(2) 
  
%*** Initialization ***     
  
voltage = 10; % motor voltage for test 
t = 2.5; % period of test in seconds 
  
t = t/0.01;  % segment test period time segments to be used in arrays.  
See for loop below 
  
Time = zeros(1,t); % time array 
read = zeros(1,t); % encoder reading array 
  
encoders = BAO_Motion2(0,0, 0,0); %take initial reading 
read(1) = encoders(3);  % read encoder count 
Time(1) = 0; % initial time is zero 
                        
%*** Start Test *** 
  
BAO_Motion2(voltage,0, 0,0); tic  %start motion & time 
  
for i=1:t; % carry out readings for t*0.01 seconds; period=pause*i(max) 
    encoders = BAO_Motion2(voltage,0, 0,0); % read encoders  
    Time(i+1) = toc; % read time 
    read(i+1) = encoders(3); % choose azimuth encoder reading 
    pause(0.01) 
end 
  
BAO_Motion2(0,0, 0,0); % Stop motion 
  
  
%**** Calculations ***** 
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dX = zeros(1,t); % initialization 
dT = zeros(1,t); % initialization 
  
for i=1:t   % calculate dX & dT 
    dX(i) = read(i+1) - read(i); 
    dT(i) = Time(i+1) - Time(i); 
end 
  
vel = dX./dT; % velocity in counts/s 
  
w = vel.*(1/57296); % angular velocity. 1 rad = 57296 counts 
  
%**** Plots ***** 
  
% First need to calc time interval midpoint for each angular vel 
  
for i = 1:t 
    w_time(i) = Time(i+1) - dT(i)/2; 
end 
  
% plot time vs angular vel (rads/sec) 
  
figure 
plot(w_time,abs(w)) 
xlabel('time (sec)') 
ylabel('Angular Velocity (rads/sec)') 
title(['Azimuth Back Instantaneous Angular Velocity (rads/s) for 
Voltage = ',num2str(voltage),' V']) 
grid 
  
% Plot Transfer function.  Must run Simulink Model Azimuth_back,mdl 
first to get sim_time & 
% velocity 
  
hold 
plot(sim_time,velocity,'r') 
legend('Measured Data','Transfer Function') 
  
% plot calculated response curve 
  
% Km=0.0155 
% a=10 
% Tm=0.048 
% Wt=Km*a*(1-exp(-w_time/Tm)) 
% hold 
% plot(w_time,Wt,'r') 
  
  
% plot time vs angular vel (degrees/sec) 
  
% figure 
% plot(w_time,abs(w*(180/pi))) 
% xlabel('time (sec)') 
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% ylabel('Angular Velocity (degrees/sec)') 
% title(['Azimuth Back Instantaneous Angular Velocity (deg/s) for 
Voltage = ',num2str(voltage),' V']) 
% grid 
  
% plot time vs position (rads) 
  
% figure 
% plot(Time,read./57296)  
% xlabel('time (sec)') 
% ylabel('Position (rads)') 
% title(['Azimuth Back Position (rads) for Voltage = 
',num2str(voltage),' V']) 
% grid 
  
% plot time vs position (degrees) 
  
% figure 
% plot(Time,(read./57296)*180/pi)  
% xlabel('time (sec)') 
% ylabel('Position (degrees)') 
% title(['Azimuth Back Position (degrees)for Voltage = 
',num2str(voltage),' V']) 
% grid 
  
%% 
  
%**********************************************************************
**** 
%%                            Azimuth Fwd Measurements 
%**********************************************************************
**** 
  
%clear all 
clc 
  
%*** Prep axis for test **** 
  
HomePosition;% Send the Source to the home position.  
pause(1); 
BAO_Motion2(5,0, 0,0);pause(6.0);BAO_Motion2(0,0, 0,0); % bring source 
all the way fwd 
pause(2) 
  
%*** Initialization ***     
  
voltage = 10; % motor voltage for test 
t = 2.5; % period of test in seconds 
  
t = t/0.01;  % segment test period time segments to be used in arrays.  
See for loop below 
  
Time = zeros(1,t); % time array 
read = zeros(1,t); % encoder reading array 



75 

  
encoders = BAO_Motion2(0,0, 0,0); %take initial reading 
read(1) = encoders(3);  % read encoder count 
Time(1) = 0; % initial time is zero 
                        
%*** Start Test *** 
  
  
BAO_Motion2(-voltage,0, 0,0); tic  %start motion & time 
  
for i=1:t; % carry out readings for 8 seconds; period=pause*i(max) 
    encoders = BAO_Motion2(-voltage,0, 0,0); % read encoders  
    Time(i+1) = toc; % read time 
    read(i+1) = encoders(3); % choose elevation encoder reading 
    pause(0.01) 
end 
  
BAO_Motion2(0,0, 0,0); % Stop motion 
  
  
%**** Calculations ***** 
  
dX = zeros(1,t); % initialization 
dT = zeros(1,t); % initialization 
  
for i=1:t   % calculate dX & dT 
    dX(i) = read(i+1) - read(i); 
    dT(i) = Time(i+1) - Time(i); 
end 
  
vel = dX./dT; % velocity in counts/s 
  
w = vel.*(1/57296); % angular velocity. 1 rad = 57296 counts 
  
%**** Plots ***** 
  
% First need to calc time interval midpoint for each angular vel 
  
for i = 1:t 
    w_time(i) = Time(i+1) - dT(i)/2; 
end 
  
% plot time vs angular vel (rads/sec) 
  
figure 
plot(w_time,w) 
xlabel('time (sec)') 
ylabel('Angular Velocity (rads/sec)') 
title(['Azimuth Fwd Instantaneous Angular Velocity (rads/s) for Voltage 
= ',num2str(voltage),' V']) 
grid 
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% Plot Transfer function.  Must run Simulink Model Azimuth_fwd.mdl 
first to get sim_time & 
% velocity 
  
hold 
plot(sim_time,velocity,'r') 
legend('Measured Data','Transfer Function') 
  
% plot calculated response curve 
  
% Km=0.0147 
% a=10 
% Tm=0.04 
% Wt=Km*a*(1-exp(-w_time/Tm)) 
% hold 
% plot(w_time,Wt,'r') 
  
  
% plot time vs angular vel (degrees/sec) 
  
% figure 
% plot(w_time,w*(180/pi)) 
% xlabel('time (sec)') 
% ylabel('Angular Velocity (degrees/sec)') 
% title(['Azimuth Fwd Instantaneous Angular Velocity (deg/s) for 
Voltage = ',num2str(voltage),' V']) 
% grid 
  
% plot time vs position (rads) 
  
% figure 
% plot(Time,read./57296)  
% xlabel('time (sec)') 
% ylabel('Position (rads)') 
% title(['Azimuth Fwd Position (rads)for Voltage = ',num2str(voltage),' 
V']) 
% grid 
  
% plot time vs position (degrees) 
  
% figure 
% plot(Time,(read./57296)*180/pi)  
% xlabel('time (sec)') 
% ylabel('Position (degrees)') 
% title(['Azimuth Fwd Position (degrees) for Voltage = 
',num2str(voltage),' V']) 
% grid 
  
%% 
  
  
HomePosition;  % end of Test 
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APPENDIX G: MATLAB CODE FOR FSM EXPERIMENTAL 
TESTING 

%********************************************************************** 
% FSM_transfer_function.m - Drives FSM for TF testing 
% 
% LCDR Scott Johnson, Jul 06 
%********************************************************************** 
  
%%  
% Calibration 
pause(5) 
BAO_Motion2(0,0,-0.50,0);pause(0.000001);BAO_Motion2(0,0, 0,0); 
%% 
  
% Draw a circle 
  
BAO_Motion2(1000000,0, 0,0); 
for x=0:0.1:10 
BAO_Motion2(0,0,sin(x),cos(x)); 
pause(0.1) 
end 
BAO_Motion2(0,0, 0,0);  
BAO_Motion2(-1000000,0, 0,0); 
  
%% 
% ** Chirp test ** 
  
% y = chirp(t,f0,t1,f1) generates samples of a linear swept-frequency 
cosine signal at the time  
% instances defined in array t, where f0 is the instantaneous frequency 
at time 0, and f1 is  
% the instantaneous frequency at time t1. f0 and f1 are both in hertz.  
% If unspecified, f0 is 0, t1 is 1, and f1 is 100. 
%% 
clear all 
  
BAO_Motion2(1000000,0, 0,0); 
END = 100; %33 = 34 sec 
count = 0; 
end_freq = 1000; 
interval = 0.000037; 
  
  
t=0:interval:END; 
y = chirp(t,0,END,end_freq); 
  
  
count = 0; 
%% 
tic 
for t1=0:interval:END 
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    count = count+1; 
    V = 0.3*y(count); 
    BAO_Motion2(0,0,V,0); %(x,x,y-dir,x-dir) 
end 
toc 
BAO_Motion2(0,0, 0,0); 
BAO_Motion2(-1000000,0, 0,0); 
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APPENDIX H: SIMULINK MODEL OF FAST STEERING 
MIRROR 
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X_direction
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APPENDIX I: MATLAB CODE FOR MOTOR AND FAST    
STEERING MIRROR CONTROL 

%****************************** 
%TrackNPS_Beacons.m 
% Created by Baker Adaptive Optics 
% 
% Modified by: Scott Johnson 
%****************************** 
  
% Note: Sticktion voltage on azimuth axis = 2.7 volts 
%       Sticktion voltage on elevation axis = 3.6 volts 
  
% Note: TASS2 must be level before starting the test. 
%**********************************************************************
**** 
%                                Initializations 
%**********************************************************************
**** 
%% 
close all;clear all;clc    
  
% *** Start initializing the platform ******** 
  
monograb(2);  % deinitialize frame-grabber camera 
clear -mex; 
  
  
Set_Iterations = 1200;  % Set the number of iterations the tracking 
sequence will run.   
                        % Approx 30 secs per 1000 interations. 
iteration = 0; 
  
dX_previous = 0; 
  
HomePosition; % Send the Source to the home position.  This also 
initializes the mount controller.  
pause(1); 
% end track 
BAO_Motion2(0,5, 0,0);pause(3.8);BAO_Motion2(0,0, 0,0); %pre-set the 
elevation to look near the 3 spots 
BAO_Motion2(-5,0, 0,0);pause(0.25);BAO_Motion2(0,0, 0,0); %pre-set the 
azimuth to look near the 3 spots 
% middle track 
% BAO_Motion2(0,5, 0,0);pause(3.1);BAO_Motion2(0,0, 0,0); 
% BAO_Motion2(5,0, 0,0);pause(1.5);BAO_Motion2(0,0, 0,0);  
  
% % Jeffs Platform 
% BAO_Motion2(0,5, 0,0);pause(4.7);BAO_Motion2(0,0, 0,0); 
% BAO_Motion2(-5,0, 0,0);pause(1.5);BAO_Motion2(0,0, 0,0); 
  
pause(2); 
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monograb(0);monograb(1); % Initialize frame-grabber 
  
BW=monograb(1); 
  
image(BW');colormap Gray(255);axis 
image;set(gcf,'backingstore','off','doublebuffer','on');pause(1); 
  
Pixel_Test  % Call this program to get telescope offsets in pixels 
%% 
%*************************************************** 
%Calcs for FSM Input Shaping 
%*************************************************** 
wx = 2*pi*212; 
Td_x = 4.8e-3; 
zeta_x = 0.11; 
Kx = exp((-zeta_x)/sqrt(1-zeta_x^2)); 
Ax_1 = 1/(1+Kx); 
Ax_2 = Kx/(1+Kx); 
  
wy = 2*pi*251; 
Td_y = 3.9e-3; 
zeta_y = 0.11; 
Ky = exp((-zeta_y)/sqrt(1-zeta_y^2)); 
Ay_1 = 1/(1+Kx); 
Ay_2 = Kx/(1+Kx); 
  
  
%% 
to = clock;  % initialization to calculate running time. See cmd 
>>etime at end of program 
tic;told=0; 
  
%**********************************************************************
*** 
%                                Begin Iteration Loop 
%**********************************************************************
**** 
  
%************************************************* 
% Locate and mark beacons 
%************************************************* 
  
    for i=1:Set_Iterations;  %set how many iterations the tracking 
sequence will run 
    iteration = iteration+1; 
    BW=monograb(1);%First, Grab an image 
    Xc(1)=0;Xc(2)=0;Xc(3)=0;Yc(1)=0;Yc(2)=0;Yc(3)=0;%then, zero out the 
3 spot x,y coordinates 
    %Now, your task is to locate the 3 beacon spots. 
        for m=1:3; %perform the search 3 times, so that you can find 
them all 
    %"Cheap" Centroiding finds the first brightest spot 
            [Vbw,Ybw]=max(max(BW)); 
            [Vbw,Xbw]=max(BW(:,Ybw)); 
            s=15;%boxsize=s*2+1, s=kind of box radius 
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            if (Xbw<s+1)|(Xbw>640-s-1)|(Ybw<s+1)|(Ybw>480-s-1); %if a 
spot is too close to the edge,  
                Vbw=0;                                          %then 
set it's brightness to zero 
            end; 
                    
    %"Inexpensive" Centroiding starts with "Cheap" Result 
        if Vbw >50                                      %if the spot 
was brightest spot was bright enough 
  
            Box=double( BW(Xbw-s:Xbw+s,Ybw-s:Ybw+s) );  %Then grab the 
box with the spot in it 
            for j=1:2*s+1                               %loop over the 
box 
                for k=1:2*s+1                           %loop over the 
box 
                    if Box(j,k)<25                     %threshold the 
data at 25 counts 
                        Box(j,k)=0; 
                    else 
                        %BW(Xbw-s+j-1,Ybw-s+k-1)=0;     %black-out the 
>25 ct spots in the original image 
                    end;                                %(you can see 
some parts of the spots in the image graphics) 
                    BW(Xbw-s+j-1,Ybw-s+k-1)=0;          %black-out the 
entire box in the original image 
                end; 
            end; 
            [X,Y]=meshgrid(Xbw-s:Xbw+s,Ybw-s:Ybw+s);    %define the 
pixels in original image space for the box 
            Sum=sum(sum(Box));                          %compute the 
sum of the box for the centroid calc. 
            Xc(m)=sum(sum(X.*Box'))/(Sum+.0000001);     %compute the X 
centroid of this iteration 
            Yc(m)=sum(sum(Y.*Box'))/(Sum+.0000001);     %compute the Y 
centroid of this iteration 
        end; 
    end;                                                %now go on to 
the next bright spot 
  
    %At this stage, you have located three centroids of the three 
brightest 
    %spots in the image BW. 
     
   d(1)=sqrt( (Xc(2)-Xc(1))^2 + (Yc(2)-Yc(1))^2  );%compute the 
distance between spots 1 and 2 
   d(2)=sqrt( (Xc(2)-Xc(3))^2 + (Yc(2)-Yc(3))^2  );%compute the 
distance between spots 2 and 3 
   d(3)=sqrt( (Xc(1)-Xc(3))^2 + (Yc(1)-Yc(3))^2  );%compute the 
distance between spots 1 and 3 
    
   %Next we determine which of the points 1,2, and 3 are A,B, and C 
    
   [longest,ilongest]=max(d);           %B-C 
   [shortest,ishortest]=min(d);         %A-B 
   if    ( (ilongest==2)&(ishortest==1) ) 
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       A=1;B=2;C=3; 
   elseif( (ilongest==3)&(ishortest==1) ) 
       A=2;B=1;C=3; 
   elseif( (ilongest==1)&(ishortest==2) ) 
       A=3;B=2;C=1; 
   elseif( (ilongest==3)&(ishortest==2) ) 
       A=2;B=3;C=1; 
   elseif( (ilongest==2)&(ishortest==3) ) 
       A=1;B=3;C=2; 
   elseif( (ilongest==1)&(ishortest==3) ) 
       A=3;B=1;C=2; 
   end; 
    
   %Now we know which spots are which:   
%     ( Xc(A),Yc(A) ) are the coords of spot A 
%     ( Xc(B),Yc(B) ) are the coords of spot B 
%     ( Xc(C),Yc(C) ) are the coords of spot C 
  
% **** Account for rotation of Beacons  *** 
  
TASS_Rotation = asind((Yc(B)-Yc(A))/Hyp_Tele);  % degrees 
  
Xa_R = Xc(B)+(Xc(A)-Xc(B))*cosd(TASS_Rotation);  
Ya_R = Yc(A)-(Xc(A)-Xc(B))*cosd(TASS_Rotation)*tand(TASS_Rotation); 
X_Tele_R = Xa_R+Hyp_Tele*cosd(TASS_Rotation+Ang_Tele); 
Y_Tele_R = Ya_R-Hyp_Tele*sind(TASS_Rotation+Ang_Tele); 
  
  
Xsrc=430;Ysrc=180;    % This is the location of the source.   
                      % Measured in pixels from the top left of camera 
display. 
                      % Need to fine tune this parameter by statically 
                      % running source motors. On target = 430,170 
    
   %check to see if the distance around the spots is reasonable to see 
if 
   %all 3 are measured properly and realistic.  The sum should be 
around 
   %125.  If the spots are not likely to be real, call the error zero 
and 
   %stop moving until they come back. 
  % if (sum(d)>150)|(sum(d)<100); Xtele=Xoff;Ytele=Yoff; end 
%     if iteration==Set_Iterations 
%    imagesc(BW');axis image;hold on;text(Xc(A),Yc(A),'A','Color','w'); 
%                                     
text(Xc(B),Yc(B),'B','Color','w'); 
%                                     
text(Xc(C),Yc(C),'C','Color','w'); 
%                                     
text(X_Tele_R,Y_Tele_R,'T','Color','b'); 
%                                     text(Xsrc,Ysrc,'S','Color','r'); 
%                                     hold off;drawnow;  
%     end 
                       
  



85 

  
  
dX=Xsrc-X_Tele_R;   %compute the error in X (azimuth) 
dY=Ysrc-Y_Tele_R;   %compute the error in Y (elevation) 
  
%********************************************************************** 
%                        Control Actions 
%********************************************************************** 
     
%***************************** 
% Motor Controls 
%***************************** 
    
%****************  P Gain   ************************************** 
     
    Vaz=dX/(-13); %minus sign account for directional difference dX and 
intended direction 
    Vel=dY/(-25); %minus sign account for directional difference dX and 
intended direction 
     
    % ********************** Integral Calcs ************* 
    % start on 20th interation 
     
    if i>50 
        Area = dX+dX_previous; 
        dX_previous = Area; 
        Vaz=Vaz+0.0000001*abs(Area); 
    end 
        
    %****************** Correct Voltages for Dynamic Friction 
************   
     
%     if Vaz<0;Vaz=Vaz-1.7;end;if Vaz>0;Vaz=Vaz+1.9;end; 
    if Vaz<0;Vaz=Vaz-2;end;if Vaz>0;Vaz=Vaz+2;end; 
    if Vel<0;Vel=(Vel-4);end;if Vel>0;Vel=(Vel+4);end; 
        
   %****************** Set limits on Voltages +- 10V 
*********************** 
     
    if Vaz>10.;Vaz=10;end;if Vaz<-10;Vaz=-10;end;%define upper and 
lower limits for drive voltage azimuth 
    if Vel>10.;Vel=10;end;if Vel<-10;Vel=-10;end;%define upper and 
lower limits for drive voltage elevation 
    
    %****************** Initial Voltage 
**************************************** 
    
    %Set initial voltage to 3 volts on first iteration to overcome 
static 
    %friction (sticktion) 
     
    if iteration==1 
        if Vaz<0;Vaz=-3;end;if Vaz>0;Vaz=3;end; 
        if Vel<0;Vel=-4;end;if Vel>0;Vel=4;end; 
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    end 
     
    %*************** Deadzone ***************************************** 
    % Create a Deadzone for motors to stop working  
     
    if abs(dX) < (0.9*15*X_Pix_ratio);  %  [max mirror movement (15mm)] 
* X_Pix_ratio(pixels/mm) = max FSM movement (pixels) 
        Vaz=0; 
        dX_previous = 0; 
    end 
     
    if abs(dY)< (0.9*15*Y_Pix_ratio);  %  [max mirror movement (15mm)] 
* Y_Pix_ratio(pixels/mm) = max FSM movement (pixels) 
        Vel=0; 
    end   
%% 
%******************************************************** 
% Fast Steering Mirror Commands.     
%******************************************************** 
  
     % ******************* Conversions ************************** 
     % Convert dx and dy into voltages.  Tests showed that when the 
     % mirror is given 0.6V the movement is approx 15mm at TASS2 
      
     Vx = (dX/X_Pix_ratio)*(0.6/15);  
%(dX(pix)/X_pix_ratio(pix/mm))*(0.6V/15mm)=Volts 
     Vy = (dY/Y_Pix_ratio)*(0.6/15);  
%(dY(pix)/Y_pix_ratio(pix/mm))*(0.6V/15mm)=Volts 
      
      
     %**************** Set Maximum Voltages ************************** 
     % set maximum FSM voltage at 0.6 volts 
     % voltages greater than 0.6V drives the laser out of the optics 
range 
    
     if Vx > 0.6; Vx = 0.6;end 
     if Vx < -0.6; Vx = -0.6;end 
      
     if Vy > 0.6; Vy = 0.6; end 
     if Vy < -0.6; Vy = -0.6; end 
  
     Mx=Vx*15/0.6*X_Pix_ratio;  % mirror movement in x-direction 
(pixels) 
                                % Vx(volts)*(15mm/0.6volts)*(pix/mm) 
     My=Vy*15/0.6*Y_Pix_ratio; % mirror movement in y-direction 
(pixels) 
      
     Xmirror = Xsrc-Mx; 
     Ymirror = Ysrc-My; 
      
     Virtual_dX = Xmirror - X_Tele_R;  % Difference btw Telescope and 
laser w/mirror movement 
     Virtual_dY = Ymirror - Y_Tele_R; 
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     %********Change polarity on voltages to match mirror directions*** 
      
     % Note: this matrix takes into account the mirror voltage 
directions 
     %       as well as the error directions fm the image. 
      
     V = [1 0;0 -1]*[Vy;Vx];  % Scott 
     %V = [0 -1;-1 0]*[Vx;Vy];  % Jae 
     Vxx = V(1);  
     Vyy = V(2);  
      
  
  
%% 
%*********** Movement Commands w/Input 
Shaping******************************** 
     
BAO_Motion2(Vaz,Vel,Ax_1*Vxx,Ay_1*Vyy); 
pause(Td_y/2) 
BAO_Motion2(Vaz,Vel,Ax_1*Vxx,Vyy); 
pause(Td_x/2-Td_y/2) 
BAO_Motion2(Vaz,Vel,Vxx,Vyy); 
  
% BAO_Motion2(Vaz,Vel,0,0); 
  
% BAO_Motion2(0,0,Ax_1*Vxx,Ay_1*Vyy); 
% pause(Td_y/wy) 
% BAO_Motion2(0,0,Ax_1*Vxx,Vyy); 
% pause(Td_x/wx-Td_y/wy) 
% BAO_Motion2(0,0,Vxx,Vyy); 
  
tnew=toc; 
dt = tnew-told; 
freq=1/(dt); 
told=toc; 
     
%************ Create arrays for plots 
********************************** 
    
    X_error(iteration)= dX; 
    Y_error(iteration)= dY; 
    V_azimuth(iteration) = Vaz; 
    V_elevation(iteration) = Vel; 
    V_x(iteration) = Vxx; 
    V_y(iteration) = Vyy; 
    frequency(iteration)= freq; 
    Time(iteration) = toc; 
    %AREA(iteration)=Area; 
    D1_2(iteration) = d(1); 
    D2_3(iteration) = d(2); 
    D3_1(iteration) = d(3); 
    XA(iteration) = Xc(A); 
    YA(iteration)= Yc(A); 
    XB(iteration) = Xc(B); 
    YB(iteration)= Yc(B);    
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    Virtual_x(iteration) = Virtual_dX; 
    Virtual_y(iteration) = Virtual_dY; 
    M_x(iteration) = Mx; 
    X_mirror(iteration) = Xmirror; 
    M_y(iteration) = My; 
     
end;  % end of iteration loop 
  
total_time = etime(clock,to); 
BAO_Motion2(0,0, 0,0);%stop the motors when you're done! 
monograb(2); % de-initialize the camera 
  
%******************************************************************** 
%               Post Operation Procedures 
%******************************************************************** 
  
%**************** Display Performance Stats in workspace ************* 
results=[X_error;Y_error;V_x;V_y]; 
results = [Xc(A) Yc(A);Xc(B) Yc(B); Yc(A)-Yc(B) 0] 
  
% plot(Time,V_x,Time,V_y,'--') 
% legend('Vx','Vy') 
%  
% figure 
% plot(Time,V_azimuth,Time,V_elevation,'--') 
% legend('Vaz','Vele') 
% total_time 
  
avg_freq = mean(frequency) 
  
%********************************************** 
% Create Error Plots 
%********************************************** 
%% 
% Plot X_error & Azimuth Voltage 
  
[AX,H1,H2]= plotyy(Time,X_error,Time,V_azimuth) 
title('X Error Plot') 
xlabel('Time (sec)') 
ylabel('X Error (pixels)') 
set(get(AX(2),'Ylabel'),'String','Azimuth Voltage (V)') 
set(H2,'LineStyle','--') 
grid 
axis 
  
figure 
hold on 
plot(Time,V_azimuth) 
plot(Time,X_error,'r') 
axis([0 30 -15 5]) 
title('X Error Plot') 
plot(Time,Virtual_x,'g') 
grid 
legend('Az Volts','X_error','Virtual Error') 
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% Plot Y_error & Elevation Voltage 
  
figure 
[AX,H1,H2]= plotyy(Time,Y_error,Time,V_elevation) 
title('Y Error Plot') 
xlabel('Time (sec)') 
ylabel('Y Error (pixels)') 
set(get(AX(2),'Ylabel'),'String','Elevation Voltage (V)') 
set(H2,'LineStyle','--') 
grid 
axis 
  
% figure 
% plot(Time,AREA) 
% grid 
  
%close all 
Test_plots 
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